Contrôle d'informatique

Durée: 1 heure

Exercice 1 On considère une fonction continue $f:[a,b] \to \mathbb{R}$ ainsi que son intégrale $I = \int_a^b f(t) dt$.

Pour tout entier $n \ge 1$ on note :

- $M_n(f)$ le résultat du calcul approché de I par la méthode du point milieu pour une subdivision de pas régulier en n intervalles;
- $-T_n(f)$ le résultat du calcul approché de I par la méthode des trapèzes pour cette même subdivision.
- a) Montrer que $M_n(f) = 2T_{2n}(f) T_n(f)$, et en déduire une expression de $T_{2^{p+1}}(f)$ en fonction de $T_{2^p}(f)$ et $M_{2^p}(f)$.
- b) Rédiger en Python une fonction milieu qui prend en arguments la fonction f, les réels a et b et un entier n et qui retourne la valeur de $M_n(f)$.
- c) La *méthode dichotomique des trapèzes* consiste à calculer les termes de la suite $(T_{2^p}(f))$ à l'aide de la formule établie au a. jusqu'à réaliser la condition $|T_{2^p} T_{2^{p-1}}| \le \varepsilon$.
 - Rédiger en Python une fonction trap_dicho qui prend en arguments la fonction f, les réels a et b et la précision ϵ et qui retourne le première valeur de T_{2^p} qui réalise la condition $|T_{2^p} T_{2^{p-1}}| \le \epsilon$.

Exercice 2 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 et $\alpha \in \mathbb{R}$ vérifiant :

- (i) $f(\alpha) = f'(\alpha) = 0$ et $f''(\alpha) \neq 0$;
- (ii) $\forall x \in \mathbb{R} \setminus \{\alpha\}, f'(x) \neq 0.$

On se propose de calculer une valeur approchée de α en utilisant le schéma de Newton-Raphson.

Question 1. On définit une fonction $h : \mathbb{R} \setminus \{\alpha\} \to \mathbb{R}$ en posant : $\forall x \neq \alpha$, $f(x) = (x - \alpha)^2 h(x)$.

- a) Quelle valeur attribuer à $h(\alpha)$ pour que la fonction h soit de classe \mathscr{C}^0 sur \mathbb{R} ? On suppose désormais ce prolongement par continuité effectué.
- b) Montrer qu'ainsi prolongée, la fonction h est de classe \mathscr{C}^1 sur \mathbb{R} .

Question 2. On note $(x_n)_{n\in\mathbb{N}}$ une suite définie par la méthode de Newton-Raphson appliquée à la fonction f, et on suppose que cette suite converge vers α .

- a) On pose $e_n = x_n \alpha$. Prouver que $\lim \frac{e_{n+1}}{e_n} = \frac{1}{2}$. Quelle est l'ordre de la méthode pour une telle fonction f?
- b) On modifie légèrement la méthode en considérant désormais la relation de récurrence :

$$x_{n+1} = x_n - p \frac{f(x_n)}{f'(x_n)}$$

et on suppose toujours que $\lim x_n = \alpha$.

Quelle valeur attribuer à *p* pour que cette nouvelle méthode soit au moins d'ordre 2?

